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» A temporal attention block in the decoder for enhancing the temporal Qualitative results

consistency of the box queries.
» A foreground-background (fg-bg) separability loss driven by adversarial

> CrossVIS [3] proposes a learning scheme which used instance features from
current frame and localize same instance in other frames.

> VisTR [4], first simple and faster VIS framework based on transformers but
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able to tackle instance appearance deformations.

Motivation

> Recent SOTA methods ignores the spatio-temporal feature relationships within
multi-scale feature domain during attention computation that is crucial for VIS
problem.

Conclusion

We proposed MS-STS VIS, which comprises a novel multi-scale
spatio-temporal split attention (MS-STS) module to effectively capture
spatio-temporal feature relationships at multiple scales across frames
in a video. We further introduced an auxiliary discriminator network

> Recent methods strive to predict the accurate instance mask undergoing
appearance deformations such as fast motion, scale variations and aspect ratio
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